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Motions at subcritical values of the Rayleigh number 
in a rotating fluid 

By G. VERONIS 
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(Received 13 July 1965) 

A simple analysis is presented for the finite-amplitude, steady motions in a 
rotating layer of fluid which is heated uniformly from below and cooled from 
above. The boundaries are considered to be ‘free’ and a solution is obtained for 
the two-dimensional problem using the eigenfunctions of the stability problem 
plus the smallest number of higher modes required to represent non-linear 
interactions. In  his analysis of the stability problem Chandrasekhar (1953) 
concluded that in mercury overstable motions can occur for a value of the 
Rayleigh number which is as little as 1/67 of the value required for instability 
to steady motions. In  the present paper it is shown that, for a restricted range 
of Taylor number, steady finite-amplitude motions can exist for values of the 
Rayleigh number smaller than the critical value required for overstability. The 
horizontal scale of these finite-amplitude steady motions is larger than that 
of the overstable motions. A more exact solution to the finite-amplitude problem 
confirms the above results. The latter solution together with additional physical 
results will be presented in a later paper. 

1. Introduction and summary 
In  an earlier paper, Veronis (1959),t finite-amplitude solutions were derived 

for a layer of fluid heated from below, cooled from above and subjected to a 
rotation about the vertical axis. The method which was employed in that paper 
was a perturbation expansion which was pivoted about the solution to the 
infinitesimal stability problem. One of the conclusions drawn from the earlier 
analysis was that in fluids with a small Prandtl number ( <  1) motion should 
exist at values of the Rayleigh number (effectively, the ratio of destabilizing 
forces to dissipation forces) below the critical value derived from linear stability 
theory. The results depend strongly on the cellular shape which the convection 
assumes. 

Recently, experiments by L. Koschmieder for the non-rotating system and 
by H. T. Rossby for a rotating fluid$ indicate that the preferred cellular pattern 
of convection consists of two-dimensional rolls whose orientation is determined by 
the lateral boundaries. The present paper assumes that convective motions do, 
in fact, occur as a two-dimensional pattern of rolls and the finite-amplitude 
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t Hereafter referred to as I. 
$ Neither study has yet been published. 
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problem is analysed for two-dimensional motions in a fluid of small Prandtl 
number where the boundaries are assumed to be ‘slippery’ as well as perfectly 
conducting. 

The method of analysis is based on a truncated representation of the finite- 
amplitude motions. Specifically, the form of the velocity and temperature fields 
is represented by the marginally stable modes plus the first distortion of these 
modes by non-linear interaction. No other modes are admitted in the representa- 
tion. The resulting non-linear equations for the modal amplitudes are then 
solved on the assumption that the motion is steady. Although such an approach 
involves a drastic oversimplification of the form of the velocity and temperature 
fields, especially if the analysis is extended to values of the Rayleigh number 
far from the critical value, it  does represent the simplest non-linear analysis for 
which results can be obtained. 

The next section contains the mathematical formulation of the problem. 
The equations are non-dimensionalized and the important parameters, the 
Prandtl number, the Taylor number (and a modified Taylor number), and the 
Rayleigh number, are introduced. 

In  Q 3 a simple physical argument is given for the occurrence of instability to  
infinitesimal, overstable (as opposed to steady) motions, It is shown there that, 
when the Prandtl number is sufficiently small, overstable motions decrease the 
constraining effect of rotation and it is for that reason that convection can exist 
a t  a value of the Rayleigh number smaller than that which is required for 
instability to marginally steady motions. The same argument is valid for the 
existence of instability to finite-amplitude motions. Hence, the study of finite- 
amplitude instability is naturally suggested. Also in Q 3 it  is shown that for the 
overstable problem a more appropriate parameter than the Taylor number is 
a modified Taylor number, viz. the Taylor number defined with the thermometric 
diffusivity replacing the kinematic viscosity. This same parameter is a more 
natural one to use in the finite-amplitude problem. 

The final section contains the finite-amplitude analysis using a truncated 
representation of five components. The method of solution is essentially the 
Galerkin method, although the purpose here is to derive information about the 
amplitudes as functions of the eigenvalue parameter. Mathematically, the 
problem reduces to finding a solution to an algebraic quadratic equation. Physic- 
ally, however, the results are far from trivial. It is shown that finite-amplitude 
solutions exist for subcritical values of the Rayleigh number as long as the modi- 
fied Taylor number is smaller than some maximum value (approximately 1000) 
and as long as the Prandtl number r is less than the reciprocal of the horizontal 
wave number. This range of Taylor number is readily accessible in a laboratory 
experiment with mercury and the phenomenon should be observable.* The 
motion involves a cellular pattern with a horizontal spacing which is the same 
as that of the non-rotating system (larger horizontal dimensions than those 
predicted by infinitesimal theory). 

* Note added in proof. In  experiments with mercury, H. T. Rossby has observed finite 
amplitude steady motions at sub-critical values of the Rayleigh number in the range of 
Taylor numbers suggested by this analysis. 
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Only this single finite-amplitude result is presented in this paper. Additional 
information, such as heat flux vs Rayleigh number, is deferred to a later paper, 
where the analysis has been extended to include as many as 85 components. 
The reason for deferring the results for heat flux is that the heat flux is quanti- 
tatively much larger when more components are included. However, the 
existence of finite-amplitude motions at subcritical values of the Rayleigh 
number has been confirmed by the study with many more components. 

2. Mathematical formulation 
The lower boundary (z = 0) of the layer of fluid is maintained at  temperature 

To and the temperature of the upper boundary ( z  = d )  is To - AT.  We write the 
total temperature as 

lPtota.l = To- AT(zld) + T ( x ,  2, t ) ,  (2.1) 

where T ( x ,  z, t )  is the deviation of the temperature from the linear profile. In  
contrast to  the formulation in I the deviation, T ( x ,  z, t ) ,  of the temperature con- 
tains a non-zero horizontal mean. 

Then the equations (all variations with respect to y are assumed to vanish) 
are the two-dimensional Boussinesq equations for the conservation of momentum 

avlat + v . vv + 2 n  x v = - p p p  - gp+,  + V V ~ V ,  (2.2) 

the conservation of mass 
aupx + a w p  = 0, 

the linear equation of state for the fluctuation density 

p' = -poaT, (2.4) 

aT/at-w(AT/d) +v .VT  = KV". (2.5) 

and the equation for the conservation of heat 

Here, v is the three-dimensional velocity vector with components (u, v, w) 
in the respective directions ( x ,  y, z ) ;  is the constant rate of rotation of the entire 
system about the vertical (2) axis; g is the gravitational acceleration in the 
negative z-direction; po is the density at  temperature To; a is the coefficient of 
thermal expansion; and v and K are respectively the coefficients of kinematic 
viscosity and thermometric diffusivity. In  equation (2.5) the linear part of 
qotal has been separated out and appears as the second term. 

We cross-differentiate the first and third equations of motion in order to elimi- 
nate the pressure p .  Then defining the y-component of vorticity 

7 = aulaz - awlax, (2.6) 

we have aq/at+~.VT-2!2(av/&) = -ga(aT/ax)+vV27. ( 2 . 7 )  

avjat + V. v v  + ~ Q U  = V V ~ V .  (2.8) 

= a+/az, w = -a$px (2.9) 
so that = a u p z  -awlax = v2+. (2.10) 

The second equation of motion has the form 

We introduce the stream function, $, through the definitions 

35-2 
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Our system then becomes 

av aT ar at = J($ ,q)+20 z -gaz+vV2q ,  

av a$ - = J($,  v )  - 2 0  - + VV%, 
at az 

aT AT a$ 
at d ax 
- = J($,  T) - - -- + K V ~ T ,  

(2.11) 

(2.12) 

(2.13) 

where J stands for the Jacobian. Furthermore, the system is non-dimensional- 
ized by 

where the primed quantities are non-dimensional. Then equations (2.1 1)  to 
(2.13) become 

aq/at = J($ ,  q) + crF(av/az) - uR(aT/ax) + uV2y, (2.15) 

av/at = J($,  v )  - a q a $ / a z )  + V V ~ V ,  (2.16) 

a q a t  = J(*, T )  - a$/ax + V ~ T ,  (2.17) 

where all of the variables are now non-dimensional, the primes have been 
dropped and the following non-dimensional parameters appear : 

v = ( K / d ) V ’ ,  t = ( d 2 / K ) t ’ ,  ( x , x )  = d(x’,z‘), T = (AT)T’, (2.14) 

(2.18) 1 
Prandtl number, cr = V / K ;  

Taylor number, F2 = 4Q2d4/u2; 

Rayleigh number, R = gaATd3/~v. 

It will be noted that the Prandtl number and the square root of the Taylor 
number appear in product form as 

9 = = 2 Q d 2 / ~ ,  (2.19) 

so that we could equally well have defined this combination (i.e. K replacing 
v in the Taylor number) as the non-dimensional number containing the rotational 
parameter. In  fact for the convection problem 9 is more appropriate than the 
Taylor number. Only in the steady, linear stability problem does 9 appear 
independently of the Prandtl number. 

The boundary conditions for the problem are straightforward. With the 
boundaries at  z = 0 and z = 1 taken as flat, stress-free boundaries and as perfect 
conductors the conditions become 

$ = 0, a2$/az2 = 0, T = 0, avpz = 0 on z = 0,  1. (2.20) 

3. Simple physical arguments about the roles of time-dependence and 
non-linearity 3.1. Summary of stability results 

The formal solution to the stability problem was first given by Chandrasekhar 
(1953) and is also discussed in I. We summarize the results briefly. 

The system is marginally stable to infinitesimal perturbations of the form 

$ N sin nax sin nnz, T N cos TUX sin nnx, v N sin  ax cos nn-z (3.1) 
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(where a! is the horizontal wave number) for a critical value of the Rayleigh 
number given by 

(3.2) 

For a given value of Y the minimum value of R, for instability occurs for n = 1 

(3.3) 
and for a2 given by 

Thus for Y 2  9 n4, we have 

a2 -+ (Y2/2n4)), R,"in + +(2n4)fY+. (3.4) 

R, = [(n2 + 012)3n4 + n2Y2]/a2. 

2a6 + 3a4 = 1 + Y2/n4. 

If the marginally stable motions are allowed to depend on time (overstable 
motions), i.e. if II., v and T are also proportional to e ip6 ,  where p is real, then the 
critical value of the Rayleigh number, now denoted by R,, is 

R, = 2 ( a +  1)a-2[(a2+n2)3n4+n2Yz/(a+ 1)2], (3.5) 

which has a minimum for n = 1 and a2 given by 

2a6+ 3014 = 1 + Y 2 / n 4 ( a +  1)2 .  

Thus when Y 2  9 7r4 

a2 + [Y2/2(a+ l)2n4]15, RTin + (27r4))3(a+ 1)  [Y2/(a+ (3.7) 

The usefulness of Y for overstable motions is clear from the asymptotic expres- 
sion for RFh. As a becomes very small, RF* -+ const 9 4 ;  hence we have a single 
asymptotic curve for large 9. These overstable motions can exist only for 
a < 1. Associated with these values for a2 and R, is a value of p ,  the frequency, 
given by 

Since p 2  > 0, a necessary condition for the existence of overstable motions is 

(3.8) 

9 2  B a z ( a 2 + 1 ) 3 ( a + i ) / ( i - , ) .  (3.9) 

p2 = - a % 4 ( a 2 +  1 ) 2 + 9 2 ( 1 - a a ) / ( a 2 +  l)(l+a). 

Mercury with a Prandtl number of 0.025 first becomes unstable to overstable 
motions. For mercury the ratio of R, to R, for large values of 9- is 

R,/R, -f (1 +a)*/2& M 67, 

i.e. the temperature difference required for marginal instability to infinitesimal 
steady convective motions is about 67 times that required for marginal instability 
to infinitesimal time-dependent motions. Hence, we would expect the instability 
in mercury to occur as overstable motions provided that (3.9) is satisfied. 

3.2. Why overstable motions occur 
Even though the analysis by Chandrasekhar shows that overstable motions 
will occur for a fluid with a sufficiently small Prandtl number if it is rotated at  a 
sufficiently high rate, we may still ask for a simple physical argument to explain 
the result. An attempt to present such an argument is given below. 

In  the non-rotating stability problem the horizontal temperature gradient of 
the perturbed field releases potential energy and the latter is balanced by the 
viscous dissipation of the motion. Thermally the upward convection of warm 
fluid is balanced by the diffusion of the excess temperature. In  these simple 
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balances the motion and temperature fields are in phase and no restoring force 
exists; hence no time-dependent motions are possible. 

In  the steady rotating system the rotation introduces a Coriolis force and a 
‘thermal wind’ component is generated. The thermal wind field is a familiar 
concept in geophysical problems-it describes a balance between a horizontal 
temperature gradient and the vertical shear of the velocity component (we shall 
call it the zonal velocity) normal to the temperature gradient. In  equation 
(2.15) this balance is given by the terms gF(av /az)  and aR(aT/ax). Of course, 
the balance is not complete because a, third force, dissipation, is also present. 
However, the inhibition of convection by rotation is clearly traceable to the 
thermal wind because a good part of the force which releases potential energy is 
now balanced by the rotational constraint which is energetically inactive. The 
larger the rotation rate, the larger the zonal velocity. Hence, less potential 
energy is released for a given horizontal temperature gradient. Because a 
component of motion exists parallel to the boundaries of the roll, the boundaries 
of the cell are closer together so that the viscous dissipation is increased. Further- 
more, the zonal velocity component introduces additional dissipation and this 
is balanced by the Coriolis term, VFU. Thus, part of the circulation velocity, u, 
is now taken up to balance the dissipation of zonal velocity which was created 
by the rotation of the system. The thermal balance is unaffected in the steady 
problem and the upward (downward) motion is still completely in phase with 
warmer (colder) fluid. 

Time-dependent motions of various types can exist in a rotating fluid because 
the Coriolis forces can act as a restoring mechanism; e.g. in a horizontally 
infinite fluid one type of oscillation which can exist is a pure inertial oscillation 
of the entire fluid. This motion involves a balance between the local acceleration 
and the Coriolis force. No such simple type of oscillation exists in the present 
case because there are horizontal gradients and cellular boundaries. However, 
an oscillation which involves a partial balance between the local acceleration 
and the Coriolis force is possible and does take place. 

In  steady convection the rotational constraint balances much of the horizontal 
temperature gradient, i.e. the force which releases potential energy. Now consider 
what happens when a transient motion can exist at the onset of convection. A 
transient motion means that part of the Coriolis force can be balanced by the 
local acceleration so that less of the rotational constraint is available to offset 
the horizontal temperature gradient. Consequently, the cell is distorted (shrunk) 
less by the rotation and there is less dissipation associated with the somewhat 
larger cell. Convection can, therefore, be maintained for a smaller imposed 
temperature difference (smaller Rayleigh number). 

In  the balance of processes we note that a time-dependent temperature field 
involves a perturbation temperature which is out of phase with the vertical 
velocity and hence is less efficient than the steady motion for convecting heat 
upward. It is clear that overstable motions are preferred only when the effects 
of these out-of-phase temperature fluctuations are smaller than the effects 
of the time-dependent motions in the dynamical processes because the latter 
enhance convection by offsetting the constraining force of rotation. The Prandtl 
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number measures the relative roles of viscosity and conductivity. When (T 

is small, viscous forces are relatively less important than diffusive processes 
and time-dependent motions are more important in the dynamical balance (where 
they are helpful) than in the thermal balance (where they are inefficient). Hence 
the onset of convection as overstable motions for smaller (T. 

The same kind of qualitative argument can be used in connexion with inertial 
processes. Thus it is possible that motions with finite amplitude may exist a t  
subcritical values of the Rayleigh number because inertial processes may balance 
the constraining effect of rotation. In  I we have seen that such is the case for 
motions of small but finite amplitude. We investigate here the effect of large 
amplitude. 

4. Results with a limited representation 
It is instructive to look at  a highly truncated representation of the various 

fields and to deduce certain general physical results with a minimum amount 
of mathematical analysis. Then, using these results as a guide, we shall proceed 
with the fully non-linear problem in a later paper. 

The stability problem has a steady solution whose form is given by the 
expressions ( 3 . 1 )  for +, T and v. The first effect of non-linearity is to distort 
the temperature field through the interaction of $ and T and the zonal velocity 
field through the interaction of + and v. The distortion of the temperature field 
will correspond to a change in the horizontal mean, i.e. a component of the form 
sin 2nz will be generated. Similarly, the zonal velocity field will be distorted by 
a component of the form sin 2nax. (A change in the horizontal mean of v corre- 
sponds to a translation of the co-ordinate system and is of no interest .) 

Therefore, the minimal system which describes finite-amplitude convection 

(4 .1  a )  is given by + = A(t )  sin nax sin nx, 

T = B(t) cos nax sin nz  + C(t) sin 2n2, (4.lb) 

v = D(t)  sin nax cos nz + E( t )  sin 2nax, ( 4 . 1 ~ )  

where the amplitudes A ,  B, C ,  D,  E can generally be functions of time, t ,  and are 
to be determined by the dynamics of the system. If expressions (4 .1 )  are sub- 
stituted into equations (2.15), (2.16) and (2.17) and if we equate corresponding 
coefficients of sin nax sin nx, cos nax sin n z ,  etc., we deduce the following set of 
equations as the deterministic set for the amplitudes 

A = n4(a2+ 1)2A+nxRB-nFD, 

B = - n%AC - naA - +(a2 + 1 )  B,  

C = +n2aAB- 4n2C, 

D = n2aAE - ~ T ( T F A  - (TZ~(~ '+  1 )  D ,  
& = - +nzaAD- 4anh2E, 

( 4 . 2 ~ )  

( 4 . 2 b )  

( 4 . 2 ~ )  

(4 .2d)  

( 4 . 2 e )  

where the dot over corresponds to a time derivative. 
This set of non-linear ordinary differential equations is too complicated to 

solve for the general time-dependent fields. However, we can look at the steady- 
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state solutions to the system. It turns out that this information is very useful 
to have because it predicts that a finite-amplitude steudy solution to  the system 
is possible for subcritical values of the Rayleigh number and that the minimum 
values of R for which a steady solution is possible lies below the critical values 
for instability to either a steady infinitesimal perturbation or an overstable 
infinitesimal perturbation. 

Setting the left-hand sides of equations (4.2) equal to zero we have 

( 4 . 3 4  

(4.3b) 

(4.3c) 

( 4 . 3 4  

(4.3e) 

Elimination of all amplitudes except for A is accomplished by the deduced 

(4.4a) relations 

E = - AD/80-a, (4.4b) 

(4.4c) 

D = - ~ ~ A / T ' [ C X ~ +  1 +A2/&']. (4.4d) 

Substituting ( 4 . 4 ~ )  and ( 4 . 4 4  into ( 4 . 3 ~ )  yields the equation (after some algebraic 
simplification) 

C = ~ c z A B ,  

B = - ~ c z A / ~ ~ [ c c ~ +  1 + 3a2A2], 

(4.5) 

The solution A = 0 corresponds to pure conduction, which we know to be a 
possible solution though it is unstable when R is sufficiently large. The remaining 
solutions are given by 

4a4 

Only the solution with the positive sign in front of the radical is admissible 
since otherwise A2 is negative, i.e. the amplitude of the stream function is 
imaginary. 

Consider the case where finite solutions exist for R < R,. The minimum 
value of R for which solutions exist is that value of R which makes the radical 
vanish provided that the first term on the right-hand side of (4.6) be non-negative. 
The radical vanishes provided that 

R = [ ( ( l / c ~ ~ - r ~ ~ ) ( l + ~ ~ ~ ) ~ n ~ ) ~  +YI2. (4.7) 

(The alternative possibility of a negative sign in front of Y causes A2 to be nega- 
tive, hence is not admissible.) With this value of R, amplitudes are real provided 
that the first term on the right-hand side of (4.6) be non-negative, or equivalently 

Y2 2 a4( 1 + a2)3n4/( l/a2 - c2). (4 -8) 
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a 2  < a-2. (4.9) 

Conditions (4.7) and (4.8) are meaningful only when 

And finally we note that RTh, the minimum value of R at which a steady 
finite-amplitude solution can exist, occurs for 

0 1 ~  = [l f (1 - 3u2)*]/3a2. (4.10) 

For small a (4.10) (with the negative sign) becomes a2 N 3 and 

Rip’” - [ { ( 2 - ~ 2 ) ~ ~ 4 } * + a 9 7 * .  (4.11) 

For mercury u = 0.025 so that (4.11) is satisfied. We note that 

Rfmin [(sg n4)* + 9’12 (4.12) 

with an asymptotic (for large 9’) value of R,”’” -+ 9 2 .  From the results of the 
stability problem we know that asymptotically RTin is achieved for large values 
of 012 and that it behaves as Yt. R,”’” as we have seen grows as Y2. Thus in the 
asymptotic range instability cannot manifest itself in the form of finite- 
amplitude steady motions. The reason for this is (as reported in I) that finite 
amplitude motions can occur in a subcritical range of R only as long as they 
can reduce the constraint of rotation. When the effect of the latter is large, 
the motion must have larger amplitudes in order to offset the constraint, 
Greater amplitudes require more release of potential energy, which in turn 
requires a larger value of R. Hence, when LT2 becomes large enough, in order 
to offset the constraint the motion must have an amplitude which cannot be 
achieved for R < R,. However, as long as 9’ is not too large, finite-amplitude 
steady motions can exist for values of R less than Rfp’”. This result is really a 
significant one considering the fact that Rf;l’n is considerably smaller than RYh, 
i.e. infinitesimal steady convection requires a much higher value of the Rayleigh 
number than does infinitesimal overstable convection. These results are sum- 
marized in figure 1 where we show the ranges of preferred types of motion 
for mercury, i.e. u = 0-025.7 

The present analysis is, of course, restricted to a severely truncated representa- 
tion. This fact is crucial especially since finite-amplitude motions which occur 
for values of R far below the critical value may require a representation quite 
different from that which is adequate to describe motions of small finite amplitude 
near the critical Rayleigh number. We should also keep in mind the fact that 
finite-amplitude unsteady motions at subcritical values of the Rayleigh number 
may be possible. 

An additional important point to note here is that the preferred scale of the 
finite-amplitude motions is larger (a2 is smaller) than the corresponding scale 
for infinitesimal overstable motions. Thus two significant qualitative results 
should be observed in an experiment with mercury. The motions should be 
steady (rather than overstable) for values of rotation corresponding to moderate 
Y2 and the scale of the motion should be comparable to that which occurs for 
non-rotating convection. 

t The curves for RP and RF are essentially unchanged for smaller values of r ~ .  

However, R:“ is shifted upward and to the left as c is decreased. 
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For fluids with Prandtl number greater than no finite-amplitude motions 
should exist below the critical Rayleigh number. For these fluids equation (4.6) 
gives the amplitudes of the motions for the limited representation. In  a later 
paper we shall explore the present result and the changes brought about by a 
larger representation. Also, by means of numerical integrations of the deter- 
mining equations we shall answer the questions brought up in this section. 
A preliminary result with a larger representation confirms the existence of 
steady motions a t  subcritical Rayleigh numbers. 

This work was supported by the National Science Foundation through 
contract GP 3564. 
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FIGURE 1. Curves of RP'", Rrin and R P  are shown as functions of the modified Taylor 
number 9 2 .  For the numerical values the value u = 0.025 has been taken. Finite- 
amplitude steady motions should exist for subcritical R for the range Y z  < lo3. For 
9 2  > 103 it is possible that subcritical overstable motions exist. 
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